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Abstract

We estimated the genetic and nongenetic (environmental) contributions to individual differences in the background

EEG power spectrum in two age cohorts withmean ages of 26.2 and 49.4 years. Nineteen-lead EEGwas recorded with

eyes closed from 142 monozygotic and 167 dizygotic twin pairs and their siblings, totaling 760 subjects. We obtained

power spectra in 24 bins of 1 Hz ranging from 1.0 to 25.0 Hz. Generally, heritability was highest around the alpha peak

frequency and lower in the theta and delta bands. In the beta band heritability gradually decreased with increasing

frequency, especially in the temporal regions. Genetic correlations between power in the classical broad bands in-

dicated that half to three-quarters of the genetic variance can be attributed to a common source. We conclude that

across the scalp and most of the frequency spectrum, individual differences in adult EEG are largely determined by

genetic factors.
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Recordings of resting background EEG show striking interindi-

vidual differences (Vogel, 2000). In part, these differences can be

described in a qualitative way, for example, the presence or ab-

sence of low-voltage EEG, defined as resting EEG without

rhythmic activity and with low amplitude that occurs in about

4% of the adult population or, at the other extreme, the presence

of continuous alpha waves in an estimated proportion of also

about 4% of the adult population (Vogel, 1970). More common,

however, is the quantitative description of the individual differ-

ences in the EEG traces by the amplitude or power spectrum.

Background EEG power has been linked with various forms

of psychopathology. For example, increased theta power and

theta/beta ratio is found in Attention Deficit Hyperactivity Dis-

order (Barry, Clarke, & Johnstone, 2003; Bresnahan & Barry,

2002; Chabot & Serfontein, 1996; Clarke, Barry, McCarthy, &

Selikowitz, 2001; Clarke et al., 2003; Jasper, Solomon, & Brad-

ley, 1938; Monastra et al., 1999; Satterfield, Cantwell, Saul,

Lesser, & Podosin, 1973), and increased beta power is found in (a

predisposition to) alcoholism (Ehlers & Schuckit, 1990, 1991;

Gabrielli et al., 1982; Propping, 1977; Rangaswamy et al., 2002;

Van Sweden & Niedermeyer, 1999; Vogel, 2000). Therefore, un-

derstanding interindividual variance in EEG power could pro-

vide clues to the underlying neurobiology of these disorders.

A first step is the partitioning of interindividual variance in

EEG power into genetic and environmental parts. This can be

done in twin studies that compare the intrapair resemblance be-

tween two types of sibling relationships, namely genetically iden-

tical (monozygotic twins, MZ) and nonidentical twins (dizygotic

twins, DZ). IfMZ resemblance for EEGpower is higher thanDZ

resemblance, this constitutes evidence for genetic influences on

the EEG. A simple formula by Falconer (1960) computes the

relative contribution of genetic influences to the total variance,

also called heritability (h2), as twice the difference in MZ/DZ

resemblance:

h2 ¼ 2ðrMZ � rDZÞ

where rMZ and rDZ quantify the intrapair resemblance for MZ

and DZ twins. Observations from the early years of electroen-

cephalography already have shown that EEG tracings of MZ

twins show remarkable resemblance (Davis & Davis, 1936), and

more so than those of DZ twins (Lennox, Gibbs, & Gibbs, 1945;

Loomis, Harvey, & Hobart, 1936). In more recent approaches,

Falconer’s formula has given way to maximum likelihood

techniques that can use more information than twin correlations

alone (Jinks & Fulker, 1970). These models can include

data from both types of twins (MZ, DZ) as well as from sin-

gleton siblings. By fitting biometric models of sibling resem-

blance to observed variance–covariance matrices, the relative

contribution of genetic and environmental factors can be esti-

mated and the contribution of environmental factors can be

further partitioned into factors shared by all siblings and factors

unique to a single sibling (Falconer & MacKay, 1996; Neale &

Cardon, 1992).

Using EEG power in the classical broad bands (delta, theta,

alpha, beta), twin studies have unanimously supported the im-

portance of genetic differences to explain individual differences
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(for an overview, see van Beijsterveldt & Boomsma, 1994). Re-

liable estimates (where sample sizes have been sufficiently large)

have been obtained in children and adolescents. Heritability of

absolute power in the broadband frequencies (averaged over

leads) ranged from 55% to 90% in 209 pairs of 5-year-old twins

(van Baal, De Geus, & Boomsma, 1996), and from 70% to 90%

in 213 adolescent twins aged 16 (van Beijsterveldt, Molenaar, de

Geus, & Boomsma, 1996). In the adult population, a large

number of small-scaled twin studies’ correlations have suggested

the importance of genetic factors in alpha amplitude measures

through Falconer’s h2 calculation. However, studies employing

structural equation modeling on large adult samples are still

lacking. In an attempt to deal with this, van Beijsterveldt and van

Baal (2002) performed a meta-analysis on the twin correlations

in five smaller studies with adult samples that had assessed alpha

power or similarmeasures. Although genetic factors significantly

contributed to EEG power in each study, it was not possible to

equate the results across studies into a single heritability estimate.

Therefore, this studywill examine a larger sample of twin families

to estimate heritability of the adult EEG power spectrum. Her-

itability of EEG power was estimated in two different age co-

horts: young adult twins and their singleton siblings with an age

centered around 25 years and middle-aged twins and their sin-

gleton siblings with an age centered around 50 years.

An additional issue addressed in this article is whether the dif-

ferent frequencies of the power spectrum have a similar genetic

architecture. It has been shown that different frequency bands

reflect different cognitive processes (Klimesch, 1999; Ray & Cole,

1985; Rugg & Dickens, 1982; Schacter, 1977). An intriguing

question is whether this is reflected in a different heritability for

these different frequency bands. As it may be argued that the

broad bands lump together sources of information of frequency

components, we examined the genetic architecture of the power

spectrum in more detail by computing heritability across narrow

frequency bins of 1 Hz. By plotting heritability against the fre-

quency of the bin, we obtained the so-called ‘‘heritability spectra.’’

This allowed us to investigate whether adjacent frequency bins

show sharp discontinuities around the lower andupper frequencies

of the broad bands. Second, we calculated the genetic correlations

between power in the broad bands, to test howmuch of the genetic

variance across frequencies can be traced to a common source.

Method

Participants

Participants were recruited from the Dutch Twin Registry as part

of a large project on the genetics of cognition and adult brain

functions (Posthuma, Neale, Boomsma, & deGeus, 2001). Adult

twins and their non-twin siblings were asked to participate in a

testing protocol lasting 4.5 h. In total, 760 family members from

309 twin families participated in the study. The complete sample

consisted of two age cohorts: a younger cohort (mean 26.2 years,

SD 4.1) and an older cohort (mean 49.4 years, SD 7.2). Partic-

ipating families consisted of one to seven siblings (including

twins). On average, 2.5 participants per family participated. Table

1 shows the frequency of families broken down by the number of

twins and siblings participating and by zygosity of the twin pair.

EEG Registration

During one part of the experimental protocol, psychometric in-

telligence, inspection time, and reaction times were assessed.

During the other, EEG was measured at rest and during various

reaction time tasks. The order of the two parts of the protocol

was randomized across family members. Consequently, half of

EEG registration sessions were during morning hours and half

were in the afternoon.

Resting backgroundEEGwas registered for 3minunder both

eyes open and eyes closed instructions, but only results from the

eyes closed conditionwill be reported. Participants were seated in

a comfortable reclining chair in a dimly lit, sound-attenuated,

and electromagnetically shielded room. They were instructed to

relax and minimize eye and body movement.

EEG was recorded with 19 Ag/AgCl electrodes mounted in

an electrocap. Signal registration was conducted using an AD

amplifier developed by Twente Medical Systems (TMS; Ens-

chede, The Netherlands) for 657 participants and NeuroScan

SynAmps 5083 amplifier for 103 participants. Signals were con-

tinuously represented online on a Necmultisync 17-in. computer

screen using Poly 5.0 software or Neuroscan Acquire 4.2. Stand-

ard 10-20 positions were F7, F3, F1, Fz, F2, F4, F8, T7, C3, Cz,

C4, T8, P7, P3, Pz, P4, P8, O1, and O2 (American Elect-

roencephalograpic Society, 1991; Jasper, 1958). For NeuroScan

participants, Fp1, Fp2, and Oz were also recorded, but not in-

cluded in the analysis. The vertical electrooculogram (EOG) was

recorded bipolarly between two Ag/AgCl electrodes, affixed 1

cm below the right eye and 1 cm above the eyebrow of the right

eye. The horizontal EOG was recorded bipolarly between two

Ag/AgCl electrodes affixed 1 cm left from the left eye and 1 cm

right from the right eye. An Ag/AgCl electrode placed on the

forehead was used as a ground electrode. Impedances of all EEG

electrodes were kept below 3 kO, and impedances of the EOG

electrodes were kept below 10 kO. The EEG was amplified, dig-

itized at 250 Hz, and stored for off-line processing. Amplifier

filter settings for TMS were a single order FIR bandpass filter

with cutoff frequencies of 0.05 Hz and 30.0 Hz. NeuroScan filter

settings were a lowpass filter at 50.0 Hz. In principle, this sug-

gested 30 Hz as the maximum frequency at which the systems

obtained comparable data. Because the filters are not perfect,

however, device-specific differences may have been introduced

even before the 30.0-Hz frequency used by the TMS system, and

the analyses were restricted to an upper level of 25.0 Hz for both

systems.

Data Processing

All EEG signals were recalculated with averaged earlobes (A1

and A2) as reference and analyzed using NeuroScan software

version 4.2. The 3-min recordingswere cut into 43 epochs of 1024
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Table 1. Composition of Participating Families

Family compositiona

Number of families

MZ DZ

Both twins only 76 72
Both twins11 sibling 40 54
Both twins12 or more siblings 10 14
One twin only 3 9
One twin11 sibling 8 9
One twin12 or more siblings F 5
One sibling 2 4
Two or more siblings 3 F

aWe based family composition on the participating offspring only. For
example, a family with ‘‘both twins only’’ could consist of more than two
children, but these did not participate in the EEG experiment.



data points (4.096 s). Any linear trend was removed from EEG

by fitting and subtracting the regression line for each epoch sep-

arately. Next, epochs were excluded per lead when EOG chan-

nels showed more than 400 mV and EEG more than 175 mV
deviation from ground in either direction. EEG traces were then

visually inspected per subject for remaining artifact due tomuscle

activity, swallowing, eye movement, bad recordings, and exter-

nally induced artifacts (e.g., experimenter initiated reset pulses,

electrical hum). Only epochs with extreme magnitudes of muscle

artifacts and eyemovements were excluded. Participantswith less

than 22 valid epochs after visual inspection were considered un-

reliable and set to missing (22 epochs ensure at least 1 min 30 s of

data per participant). In all instances, however, data were made

missing only for the particular lead. For an average lead, 741

participants passed the criteria.

For all remaining epochs, power spectra were calculated with a

Hamming window for 5% of the epoch duration at the beginning

and end of the epochs. Power spectra were averaged, resulting in a

single spectrum with a resolution of about 0.25 Hz (1000/4096

Hz). Power values across the spectrum were aggregated into 1.0-

Hz bins, from 1.0 Hz up to but not including 2.0 Hz, from 2.0 Hz

up to but not including 3.0 Hz, and so forth up to 25.0 Hz, thus

creating twenty-four 1.0-Hz bins. Power in the classical broad

bandswere defined as follows: theta as the sumof all available data

points from 4.0 Hz up to but not including 8.0 Hz, alpha as the

sum from 8.0 Hz up to but not including 13.0 Hz, and beta as the

sum from 13.0 Hz up to but not including 25.0 Hz.

Statistical Analyses

Statistical genetic analysis of the power spectra was performed

using Structural Equation Modeling implemented in the pro-

gram Mx (Neale, 2003). Extended twin designs provide data

characterized by families of variable size. Mx handles such un-

balanced data sets via full information maximum likelihood,

which uses the observed, raw data instead of variance–covariance

matrices. To evaluate how well the specified model fits the ob-

served data, the raw data option in Mx calculates the negative

log-likelihood (�LL) of the raw data for each family (Lange,

Westlake, & Spence, 1976) as �LL5 � k log (2p)1log

|S|1(yi�mi)0S
� 1(yi�mi), where k (k5 1, . . ., p) denotes the to-

tal number of observed variables within a family (and can vary

over families), S(p � p) is the expected covariance matrix of

family members, yi (for i5 1, . . ., p) is the vector of observed

scores, mi is the column vector of the expected values of the var-

iables, and |S| andS� 1 are the determinant and inverse ofmatrix

S, respectively.
Twice the difference between two nested models (� 2

{LLfull model�LLnested model}) is asymptotically distributed as

w2. A high w2 against a low gain of degrees of freedom (Ddf )
denotes a worse fit of the second, more restrictive model relative to

the first model. By stepwise restricting the number of parameters,

the most parsimonious model for the data set can be found. Each

nested model is compared to the previous one. Additionally, a

linear regression model was employed to include effects of age and

sex on the observed scores: mi 5b01b1 agei1b2 sexi, where mi is the
expected value of individual i, agei is the individual’s age at the time

of measurement, sexi is the individual’s sex (0 denotes female,

1 denotes male), b0 is the intercept, b1 is the regression estimate

of age, and b2 is the deviation of males from females. This means

model was fitted for the two age cohorts separately.

We tested for sample homogeneity by reduction of the number

of parameters, as explained above, between the following groups:

twins versus other siblings, zygosity types, sexes, and cohorts.

Group homogeneity was tested stepwise in this order. If groups

were found not to differ significantly, parameters were equated

across those groups, and the next nestedmodel was tested. Given

the large number of tests that might be involved (19 leads across

24 frequency bins5 456 tests, and more when any of the groups

is found to be heterogeneous), the risk of type I error was greatly

increased. Because there is no a priori reason to assume topo-

graphic differences in sample homogeneity, we restricted heter-

ogeneity testing to the central lead Cz in four broad bands (delta,

theta, alpha, and beta).

Next, the observed interindividual variation in power spectra

was decomposed into additive genetic variation (s2A), shared en-

vironmental variation (s2C), or nonshared environmental varia-

tion (s2E) following Neale and Cardon (1992). Sources of shared

environmental variation by definition include all environmental

influences that twins and siblings from the same family share,

whereas sources of nonshared environmental variation refer to

the environmental variation that is unique for an individual and

that is typically not shared with other family members. For DZ

twin pairs (and sibling pairs if the saturated models indicated no

difference in correlation betweenDZ twin pairs and sibling pairs)

correlation between shared environmental influences (C) was

fixed at 1 and the correlation between additive genetic influences

(A) at 0.5. For MZ twins correlations between additive genetic

influences and between shared environmental influences were

fixed at 1. Correlation between nonshared environmental influ-

ences (E), per definition, is set to 0 for both MZ and DZ twins.

Thus, the expectation for the total variance is s2A þ s2C þ s2E , the
expectation for the covariance betweenMZ twins is s2A þ s2C, and
the expectation for DZ twins/sibling pairs is 0:05� s2A þ s2C.
Heritability is calculated as the proportional contribution of

genetic variation to the total, observed variation
s2A

s2
A
þs2

C
þs2

E

� �
.

Goodness of fit of the variance decomposition models and sig-

nificance of estimated parameters was, again, determined by

likelihood ratio tests.
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Table 2. Stability of the Frequency Bands over an Average Period

of 1.77 Years

Lead N

Frequency band

d y a b

F7 27 0.72 0.88 0.89 0.81
F3 28 0.72 0.91 0.91 0.84
F1 27 0.71 0.91 0.93 0.82
FZ 28 0.73 0.91 0.91 0.86
F2 26 0.73 0.91 0.91 0.86
F4 27 0.73 0.90 0.91 0.87
F8 26 0.68 0.84 0.89 0.75
T7 27 0.66 0.84 0.89 0.86
C3 28 0.84 0.95 0.95 0.86
CZ 27 0.11 0.80 0.86 0.52
C4 27 0.39 0.84 0.87 0.68
T8 27 0.68 0.89 0.88 0.81
P7 27 0.87 0.96 0.92 0.90
P3 26 0.55 0.86 0.89 0.75
PZ 27 0.50 0.82 0.84 0.76
P4 28 0.87 0.95 0.96 0.89
P8 26 0.85 0.95 0.93 0.93
O1 26 0.86 0.94 0.94 0.88
O2 26 0.83 0.93 0.93 0.86
Mean 0.69 0.89 0.91 0.82



Results

Temporal Stability

Thirty subjects were retested after an average interval of 674 days

ranging from 354 to 1322 days. Twenty-eight had valid EEG

data available on any lead. Temporal stability scores (Table 2) are

highest for theta and alpha. Stability of beta band power suggests

more change over time than alpha and theta, and delta shows

lowest stability, varying from .60 to .87 with a few very low scores

at Cz and C3, and only moderate scores at Pz and P3.

Sample Homogeneity across Groups

Assumptions of homogeneity across twin/singleton, zygosity, and

sex groups were all met. We found evidence for heterogeneity of

variance and/or means and/or covariances across the age cohorts

(theta: w2[6] 5 14.14, p5 .028; alpha: w2[6] 5 20.43, p5 .002;

beta: w2[6]5 16.95, p5 .009). Therefore, subsequent variance de-

composition models will be estimated separately for each cohort.

Broadband Correlations and Variance Decomposition

Table 3 shows the twin correlations for the broad bands as es-

timated with Mx. These suggest a strong, additive genetic effect

as the MZ correlations are high and the DZ correlations are

around half the MZ correlation (Falconer & MacKay, 1996).

Correlations are generally higher in the alpha band across all

leads. They are also higher in the young cohort across all leads

and frequencies. There is little evidence for strong topographic

differences except for some lower correlations in the temporal
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Table 3. Twin and Sibling Correlations between Identical (MZ) and Any Other, Nonidentical (DZ, SIB) Sibling Pairs, with

Heritabilities, of Broadband EEG Power

Young adult

d y a b

MZ DZ SIB h2 MZ DZ SIB h2 MZ DZ SIB h2 MZ DZ SIB h2

F7 0.45 0.20 0.43 0.86 0.49 0.86 0.91 0.47 0.91 0.71 0.45 0.73
F3 0.58 0.23 0.55 0.85 0.51 0.85 0.93 0.47 0.93 0.79 0.48 0.80
F1 0.59 0.22 0.54 0.85 0.55 0.85 0.93 0.46 0.93 0.85 0.50 0.85
FZ 0.60 0.23 0.56 0.84 0.51 0.84 0.92 0.45 0.92 0.84 0.50 0.84
F2 0.59 0.22 0.54 0.84 0.52 0.85 0.93 0.46 0.93 0.87 0.50 0.87
F4 0.58 0.18 0.50 0.84 0.51 0.84 0.93 0.46 0.93 0.83 0.52 0.83
F8 0.48 0.21 0.45 0.83 0.48 0.84 0.91 0.43 0.92 0.78 0.46 0.78
T7 0.56 0.25 0.54 0.82 0.46 0.82 0.90 0.48 0.90 0.53 0.20 0.49
C3 0.71 0.32 0.70 0.88 0.48 0.88 0.92 0.44 0.92 0.86 0.46 0.86
CZ 0.78 0.54 0.79 0.87 0.51 0.87 0.93 0.48 0.93 0.88 0.52 0.88
C4 0.76 0.47 0.77 0.85 0.47 0.85 0.91 0.43 0.91 0.85 0.51 0.86
T8 0.69 0.22 0.63 0.84 0.40 0.84 0.90 0.45 0.90 0.27 0.30 0.40
P7 0.59 0.31 0.59 0.84 0.45 0.84 0.88 0.42 0.88 0.80 0.43 0.80
P3 0.74 0.53 0.76 0.88 0.51 0.88 0.89 0.49 0.89 0.88 0.55 0.88
PZ 0.68 0.51 0.71 0.82 0.48 0.82 0.89 0.52 0.89 0.78 0.56 0.80
P4 0.73 0.38 0.74 0.90 0.46 0.90 0.90 0.49 0.90 0.85 0.54 0.86
P8 0.69 0.38 0.70 0.88 0.44 0.88 0.85 0.44 0.85 0.78 0.50 0.79
O1 0.60 0.32 0.60 0.82 0.43 0.82 0.85 0.43 0.85 0.82 0.50 0.83
O2 0.69 0.24 0.66 0.85 0.38 0.85 0.85 0.43 0.85 0.82 0.50 0.83
Mean 0.64 0.31 0.62 0.85 0.48 0.85 0.90 0.46 0.90 0.78 0.47 0.79

Middle-aged

d y a b

MZ DZ SIB h2 MZ DZ SIB h2 MZ DZ SIB h2 MZ DZ SIB h2

F7 0.45 0.23 0.45 0.66 0.37 0.67 0.83 0.41 0.83 0.67 0.28 0.66
F3 0.37 0.22 0.40 0.73 0.40 0.73 0.87 0.43 0.87 0.81 0.39 0.81
F1 0.35 0.24 0.40 0.74 0.37 0.74 0.84 0.42 0.84 0.81 0.41 0.81
FZ 0.44 0.26 0.46 0.71 0.36 0.71 0.85 0.42 0.85 0.80 0.40 0.80
F2 0.42 0.23 0.43 0.72 0.37 0.72 0.86 0.42 0.86 0.80 0.39 0.80
F4 0.38 0.23 0.41 0.73 0.35 0.73 0.86 0.42 0.86 0.80 0.34 0.80
F8 0.52 0.21 0.50 0.74 0.35 0.74 0.85 0.44 0.85 0.79 0.36 0.79
T7 0.52 0.24 0.51 0.78 0.34 0.77 0.79 0.33 0.79 0.45 0.20 0.43
C3 0.55 0.25 0.53 0.77 0.34 0.76 0.84 0.39 0.84 0.77 0.32 0.77
CZ 0.55 0.26 0.55 0.78 0.29 0.77 0.85 0.40 0.85 0.83 0.39 0.83
C4 0.48 0.23 0.47 0.77 0.32 0.76 0.89 0.37 0.89 0.84 0.37 0.84
T8 0.53 0.19 0.50 0.75 0.31 0.75 0.80 0.38 0.79 0.52 0.32 0.54
P7 0.67 0.22 0.62 0.82 0.33 0.81 0.82 0.36 0.82 0.72 0.29 0.70
P3 0.65 0.25 0.62 0.80 0.32 0.80 0.88 0.39 0.88 0.82 0.37 0.82
PZ 0.69 0.34 0.69 0.79 0.34 0.78 0.87 0.38 0.88 0.82 0.43 0.82
P4 0.68 0.25 0.64 0.74 0.33 0.73 0.89 0.39 0.89 0.78 0.38 0.78
P8 0.66 0.24 0.63 0.76 0.32 0.75 0.90 0.41 0.90 0.78 0.30 0.77
O1 0.73 0.24 0.69 0.75 0.30 0.74 0.83 0.34 0.83 0.73 0.32 0.73
O2 0.70 0.22 0.65 0.75 0.32 0.74 0.87 0.39 0.87 0.70 0.35 0.70
Mean 0.54 0.24 0.53 0.75 0.34 0.75 0.85 0.39 0.85 0.75 0.35 0.75



areas in the beta range. The overall pattern of correlations does

not suggest a role for common environment in EEG power. The

exception may be the correlations for spectra in the young co-

hort, broadband theta and beta, because the DZ correlation is

slightly but systematically over half the MZ correlation. ACE

versus AE model fitting, however, did not reach significance for

any lead and broadband combination except for delta and beta

on Pz and for delta on P3. These significant results did not hold

under the Bonferroni alpha level correction for multiple testing.

Therefore, in subsequentmodel fitting an AEmodel was used for

all bands and all leads.

Heritability Spectra Based on 1-Hz Bins

Figure 1 show the heritability spectra for each lead with

cohorts plotted separately. Heritability is high for both cohorts,

peaking in the alpha range. It drops with decreasing frequency in

the theta and delta ranges but remains high with increasing fre-

quency in the beta range, except for the temporal area. Cohort

differences systematically showed lower heritability in the older

cohort, mainly in the frontocentral regions for theta and delta,

and mainly in the left hemisphere for the beta range.

Alignment of Spectra on Individual Alpha Frequency

The boundaries of the alpha band as well as of the other ‘‘clas-

sical’’ broad bands are based on population-averaged EEG

spectra that only imperfectly reflect the constituent individual

EEG spectra and, consequently, their genetic determinants. In

adult subjects peak alpha frequency ranges from 8 to 13 Hz.

Assigning a fixed alpha band to all subjects could easily confound

alpha with up to a 3-Hz bin of theta or a 2-Hz bin of beta power

depending on whether the individual’s peak is high or low within

the normal alpha band (Klimesch, 1999). We therefore repeated

our genetic analyses on spectra that were aligned on the individ-

ual alpha peak. We defined the dominant frequency as the one

with maximum attenuation of alpha power by opening of the

eyes, following Klimesch. Using this ‘‘alpha blocking’’ defini-

tion, we were able to establish the individual alpha frequency for

all but 90 subjects.

Alignment did not yield significantly different heritability es-

timates in the theta, alpha, and beta bands on most leads after

examining the 95% confidence intervals. A reduced heritability

was only found in two bins surrounding peak alpha in the frontal

leads of the young cohort. Overall, we conclude that alignment

produces no or marginally different heritability estimates. Be-

cause many subjects were lost in the alignment procedure (no

clear alpha peak), we proceeded with unaligned spectra from the

eyes closed condition.

Genetic Correlations between Frequencies

To get an indication of the extent to which heritable variance

of the frequency bins can be traced to a common genetic source,

we calculated the genetic correlations between the broadband

frequencies, that is, the proportion of genetic variance shared
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Figure 1. Heritability spectra.

Table 4. Phenotypic and Genetic Correlations (Genetic Variation

Due to a Common Source) between Broadband Frequencies on

Lead CZ

Frequency band

d y a b

Young adult
d F 0.73 0.48 0.55
y 0.75 F 0.69 0.59
a 0.55 0.74 F 0.55
b 0.62 0.60 0.58 F
Middle-aged
d F 0.58 0.37 0.45
y 0.63 F 0.69 0.62
a 0.55 0.73 F 0.65
b 0.63 0.65 0.68 F

Note: Upper triangles are phenotypic, lower triangles are genetic
correlations.



between any two variables. These were calculated for each cohort

separately. The results are shown in Table 4. In both cohorts,

55% to about 75% of the genetic variance overlaps between the

bands. The genetic correlations were all significantly different

from both zero and unity, suggesting that common as well as

unique genetic factors contributed to each of the broad bands.

Discussion

The results show that in adult subjects EEG power at rest is a

heritable trait across the entire frequency spectrum. No evidence

was found for common environmental influences on the EEG

power spectrum. A meaningful contribution of unique environ-

ment was limited to the delta frequencies, which showed lower

heritabilities down to 40%. This lower delta heritability, together

with the lower temporal stability for delta, may be explained in

part by larger measurement error for this frequency, due to, for

example, residual eye movement artifacts. Measurement error in

our modeling will show up as unique environmental influences.

Alternatively, we cannot rule out that true environmental factors

have more impact on low frequency EEG power than on power

in the higher frequency bands. In the upper beta regions, both

heritability and stability were somewhat lower in the temporal

areas. Again, this might be explained either by larger measure-

ment error or by larger sensitivity to environmental factors. It is

hard to explain, however, why unique environmental factors

would affect beta frequencies only in these scalp regions.

For the theta and alpha frequencies, our MZ twin correla-

tions were similar to 5-min test–retest correlations reported in the

literature (Salinsky, Oken, & Morehead, 1991) as well as the

longer term stability over a period of years reported here. Iden-

tical twins, therefore, resemble their co-twin about as much as

they would themselves over a period of years. Overall, our results

establish EEG power to be one of the most heritable complex

traits in human subjects. This is in keeping with previous results

from smaller studies of twin families (Lykken, Tellegen, Iacono,

& McGue, 1998; McGuir, Katsanis, & Iacono, 1982; Christian

et al., 1996) and the large adolescent studies (van Beijsterveldt &

van Baal, 2002; van Beijsterveldt et al., 1996).

The overarching suggestion of the ‘‘heritability spectra’’ in

Figure 1 is that the separation of broad bands on the basis of

EEG power has little basis in its genetic architecture. In contrast,

the uniformity of the heritability spectra suggests that EEG

powers at different frequencies share a common genetic source.

We further tested this hypothesis by computing the genetic cor-

relations between the broadband frequencies in a multivariate

genetic model. The results indicated that a moderately high to

high proportion of genetic variance was shared among the fre-

quency bands. In both cohorts, genetic correlations varied from

.55 to about .75. Therefore, a significant proportion of the

heritable variance in all frequency bands must be attributed to a

common genetic source. This is in concordance with genetic

correlations between the broadband frequencies found in ado-

lescents (Anokhin et al., 2001).

Genes common to all frequencies may affect EEG power

through ‘‘trivial’’ effects on the conductive properties of the

tissues surrounding the cortex. As often observed before, skull

and scalp thickness, most likely heritable traits, strongly influ-

ence EEG power (Babiloni et al., 1997; Leissner, Lindholm, &

Petersen, 1970; Nunez, 1981). A common genetic source for

EEG may also reside in nontrivial common influences on cer-

ebral rhythm generators like the central ‘‘pacemaker’’ in the

septum for hippocampal slow-wave activity (3–4 Hz) or the tha-

lamocortical and corticocortical generators of cortical alpha

rhythmicity (Lopes da Silva, 1991; Steriade, Gloor, Llinas, Lopes

da Silva, & Mesulam, 1990). Another possible source could lie in

genes directly involved in the bioelectric basis of the EEG signal

itself; genes influencing the number of pyramidal cells, the number

of dendritic connections, or their orientation with respect to the

scalp may directly influence the mass dendritic tree depolarization

of pyramidal cells in the cortex that underlies EEG power (Ray,

1990). To resolve the genetic basis of the EEG, a whole genome

scan on power in the broad bands followed by positional cloning

seems the most rational approach. In view of the high heritability

of EEG power, such gene finding is entirely feasible.
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